In mathematics, an indicator function or a characteristic function is a function defined on a set that indicates membership of an element in a subset of , having the value 1 for all elements of A and the value 0 for all elements of X not in A.
Contents |
The indicator function of a subset of a set is a function
defined as
The Iverson bracket allows the equivalent notation, , to be used instead of
The function is sometimes denoted or or even just . (The Greek letter χ appears because it is the initial letter of the Greek word characteristic.)
A related concept in statistics is that of a dummy variable (this must not be confused with "dummy variables" as that term is usually used in mathematics, also called a bound variable).
The term "characteristic function" has an unrelated meaning in probability theory. For this reason, probabilists use the term indicator function for the function defined here almost exclusively, while mathematicians in other fields are more likely to use the term characteristic function to describe the function which indicates membership in a set.
The indicator or characteristic function of a subset of some set , maps elements of to the range .
This mapping is surjective only when is a non-empty proper subset of . If , then . By a similar argument, if then .
In the following, the dot represents multiplication, 1·1 = 1, 1·0 = 0 etc. "+" and "−" represent addition and subtraction. "" and "" is intersection and union, respectively.
If and are two subsets of , then
and the indicator function of the complement of A i.e. AC is:
More generally, suppose is a collection of subsets of . For any ,
is clearly a product of s and s. This product has the value 1 at precisely those which belong to none of the sets and is otherwise. That is
Expanding the product on the left hand side,
where is the cardinality of . This is one form of the principle of inclusion-exclusion.
As suggested by the previous example, the indicator function is a useful notational device in combinatorics. The notation is used in other places as well, for instance in probability theory: if is a probability space with probability measure and is a measurable set, then becomes a random variable whose expected value is equal to the probability of
This identity is used in a simple proof of Markov's inequality.
In many cases, such as order theory, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary number theory, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)
Given a probability space with , the indicator random variable is defined by if otherwise
Kurt Gödel described the representing function in his 1934 paper "On Undecidable Propositions of Formal Mathematical Systems". (The paper appears on pp. 41-74 in Martin Davis ed. The Undecidable):
Stephen Kleene (1952) (p. 227) offers up the same definition in the context of the primitive recursive functions as a function φ of a predicate P, takes on values 0 if the predicate is true and 1 if the predicate is false.
For example, because the product of characteristic functions φ1*φ2* . . . *φn = 0 whenever any one of the functions equals 0, it plays the role of logical OR: IF φ1=0 OR φ2=0 OR . . . OR φn=0 THEN their product is 0. What appears to the modern reader as the representing function's logical-inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY (p. 228), the bounded- (p. 228) and unbounded- (p. 279ff) mu operators (Kleene (1952)) and the CASE function (p. 229).
In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions are generalized to take value in the real unit interval [0, 1], or more generally, in some algebra or structure (usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called membership functions, and the corresponding "sets" are called fuzzy sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world predicates like "tall", "warm", etc.